Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We prove an asymptotic formula for the eighth moment of Dirichlet L-functions averaged over primitive characters χ modulo q, over all moduli q≤Q and with a short average on the critical line. Previously the same result was shown conditionally on the Generalized Riemann Hypothesis by the first two authors.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract A conjecture of Erdős states that, for any large primeq, every reduced residue class {(\operatorname{mod}q)}can be represented as a product {p_{1}p_{2}}of two primes {p_{1},p_{2}\leq q}. We establish a ternary version of this conjecture, showing that, for any sufficiently large cube-free integerq, every reduced residue class {(\operatorname{mod}q)}can be written as {p_{1}p_{2}p_{3}}with {p_{1},p_{2},p_{3}\leq q}primes. We also show that, for any {\varepsilon>0}and any sufficiently large integerq, at least {(\frac{2}{3}-\varepsilon)\varphi(q)}reduced residue classes {(\operatorname{mod}q)}can be represented as a product {p_{1}p_{2}}of two primes {p_{1},p_{2}\leq q}.The problems naturally reduce to studying character sums. The main innovation in the paper is the establishment of a multiplicative dense model theorem for character sums over primes in the spirit of the transference principle. In order to deal with possible local obstructions we establish bounds for the logarithmic density of primes in certain unions of cosets of subgroups of {\mathbb{Z}_{q}^{\times}}of small index and study in detail the exceptional case that there exists a quadratic character {\psi~{}(\operatorname{mod}\,q)}such that {\psi(p)=-1}for very many primes {p\leq q}.more » « less
-
We show that, for almost all x x , the interval ( x , x + ( log x ) 2.1 ] (x, x+(\log x)^{2.1}] contains products of exactly two primes. This improves on a work of the second author that had 3.51 3.51 in place of 2.1 2.1 . To obtain this improvement, we prove a new type II estimate. One of the new innovations is to use Heath-Brown’s mean value theorem for sparse Dirichlet polynomials.more » « less
-
Abstract We study higher uniformity properties of the Möbius function$$\mu $$, the von Mangoldt function$$\Lambda $$, and the divisor functions$$d_k$$on short intervals$$(X,X+H]$$with$$X^{\theta +\varepsilon } \leq H \leq X^{1-\varepsilon }$$for a fixed constant$$0 \leq \theta < 1$$and any$$\varepsilon>0$$. More precisely, letting$$\Lambda ^\sharp $$and$$d_k^\sharp $$be suitable approximants of$$\Lambda $$and$$d_k$$and$$\mu ^\sharp = 0$$, we show for instance that, for any nilsequence$$F(g(n)\Gamma )$$, we have$$\begin{align*}\sum_{X < n \leq X+H} (f(n)-f^\sharp(n)) F(g(n) \Gamma) \ll H \log^{-A} X \end{align*}$$ when$$\theta = 5/8$$and$$f \in \{\Lambda , \mu , d_k\}$$or$$\theta = 1/3$$and$$f = d_2$$. As a consequence, we show that the short interval Gowers norms$$\|f-f^\sharp \|_{U^s(X,X+H]}$$are also asymptotically small for any fixedsfor these choices of$$f,\theta $$. As applications, we prove an asymptotic formula for the number of solutions to linear equations in primes in short intervals and show that multiple ergodic averages along primes in short intervals converge in$$L^2$$. Our innovations include the use of multiparameter nilsequence equidistribution theorems to control type$$II$$sums and an elementary decomposition of the neighborhood of a hyperbola into arithmetic progressions to control type$$I_2$$sums.more » « less
-
Abstract Singmaster’s conjecture asserts that every natural number greater than one occurs at most a bounded number of times in Pascal’s triangle; that is, for any natural number $$t \geq 2$$, the number of solutions to the equation $$\binom{n}{m} = t$$ for natural numbers $$1 \leq m \lt n$$ is bounded. In this paper we establish this result in the interior region $$\exp(\log^{2/3+\varepsilon} n) \leq m \leq n - \exp(\log^{2/3+\varepsilon} n)$$ for any fixed ɛ > 0. Indeed, when t is sufficiently large depending on ɛ, we show that there are at most four solutions (or at most two in either half of Pascal’s triangle) in this region. We also establish analogous results for the equation $$(n)_m = t$$, where $$(n)_m := n(n-1) \dots (n-m+1)$$ denotes the falling factorial.more » « less
-
Abstract We evaluate asymptotically the variance of the number of squarefree integers up to x in short intervals of length $$H < x^{6/11 - \varepsilon }$$ H < x 6 / 11 - ε and the variance of the number of squarefree integers up to x in arithmetic progressions modulo q with $$q > x^{5/11 + \varepsilon }$$ q > x 5 / 11 + ε . On the assumption of respectively the Lindelöf Hypothesis and the Generalized Lindelöf Hypothesis we show that these ranges can be improved to respectively $$H < x^{2/3 - \varepsilon }$$ H < x 2 / 3 - ε and $$q > x^{1/3 + \varepsilon }$$ q > x 1 / 3 + ε . Furthermore we show that obtaining a bound sharp up to factors of $$H^{\varepsilon }$$ H ε in the full range $$H < x^{1 - \varepsilon }$$ H < x 1 - ε is equivalent to the Riemann Hypothesis. These results improve on a result of Hall (Mathematika 29(1):7–17, 1982) for short intervals, and earlier results of Warlimont, Vaughan, Blomer, Nunes and Le Boudec in the case of arithmetic progressions.more » « less
-
Abstract Let $$H = N^{\theta }, \theta> 2/3$$ and $$k \geq 1$$. We obtain estimates for the following exponential sum over primes in short intervals: \begin{equation*} \sum_{N < n \leq N+H} \Lambda(n) \mathrm e(g(n)), \end{equation*}where $$g$$ is a polynomial of degree $$k$$. As a consequence of this in the special case $$g(n) = \alpha n^k$$, we deduce a short interval version of the Waring–Goldbach problem.more » « less
An official website of the United States government
